

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering)

By Xiang Zhou, Chongjin Xie

Download now

Read Online

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie

Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks

This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book's 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers.

- Contains basic theories and up-to-date technology advancements in each chapter
- Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding

- Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model
- Presents impairment equalization and mitigation techniques

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.

Xiang Zhou is a Tech Lead within Google Platform Advanced Technology. Before joining Google, he was with AT&T Labs, conducting research on various aspects of optical transmission and photonics networking technologies. Dr. Zhou is an OSA fellow and an associate editor for *Optics Express*. He has extensive publications in the field of optical communications.

Chongjin Xie is a senior director at Ali Infrastructure Service, Alibaba Group. Before joining Alibaba Group, he was a Distinguished Member of Technical Staff at Bell Labs, Alcatel-Lucent. Dr. Xie is a fellow of OSA and senior member of IEEE. He is an associate editor of the *Journal of Lightwave Technology* and has served in various conference committees.

[Download Enabling Technologies for High Spectral-efficiency ...pdf](#)

[Read Online Enabling Technologies for High Spectral-efficiency ...pdf](#)

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering)

By Xiang Zhou, Chongjin Xie

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie

Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks

This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book's 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4 and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers.

- Contains basic theories and up-to-date technology advancements in each chapter
- Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding
- Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model
- Presents impairment equalization and mitigation techniques

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.

Xiang Zhou is a Tech Lead within Google Platform Advanced Technology. Before joining Google, he was with AT&T Labs, conducting research on various aspects of optical transmission and photonics networking technologies. Dr. Zhou is an OSA fellow and an associate editor for *Optics Express*. He has extensive publications in the field of optical communications.

Chongjin Xie is a senior director at Ali Infrastructure Service, Alibaba Group. Before joining Alibaba Group, he was a Distinguished Member of Technical Staff at Bell Labs, Alcatel-Lucent. Dr. Xie is a fellow of OSA and senior member of IEEE. He is an associate editor of the *Journal of Lightwave Technology* and has served in various conference committees.

**Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks
(Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie Bibliography**

- Sales Rank: #1884725 in Books
- Published on: 2016-04-11
- Original language: English
- Number of items: 1
- Dimensions: 9.30" h x 1.20" w x 6.10" l, 1.47 pounds
- Binding: Hardcover
- 648 pages

[Download Enabling Technologies for High Spectral-efficiency ...pdf](#)

[Read Online Enabling Technologies for High Spectral-efficiency ...pdf](#)

Download and Read Free Online Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie

Editorial Review

From the Back Cover

Presents the technological advancements that enable high spectral-efficiency and high-capacity fiber-optic communication systems and networks

This book examines key technology advances in high spectral-efficiency fiber-optic communication systems and networks, enabled by the use of coherent detection and digital signal processing (DSP). The first of this book's 16 chapters is a detailed introduction. Chapter 2 reviews the modulation formats, while Chapter 3 focuses on detection and error correction technologies for coherent optical communication systems. Chapters 4

and 5 are devoted to Nyquist-WDM and orthogonal frequency-division multiplexing (OFDM). In chapter 6, polarization and nonlinear impairments in coherent optical communication systems are discussed. The fiber nonlinear effects in a non-dispersion-managed system are covered in chapter 7. Chapter 8 describes linear impairment equalization and Chapter 9 discusses various nonlinear mitigation techniques. Signal synchronization is covered in Chapters 10 and 11. Chapter 12 describes the main constraints put on the DSP algorithms by the hardware structure. Chapter 13 addresses the fundamental concepts and recent progress of photonic integration. Optical performance monitoring and elastic optical network technology are the subjects of Chapters 14 and 15. Finally, Chapter 16 discusses spatial-division multiplexing and MIMO processing technology, a potential solution to solve the capacity limit of single-mode fibers.

- Contains basic theories and up-to-date technology advancements in each chapter
- Describes how capacity-approaching coding schemes based on low-density parity check (LDPC) and spatially coupled LDPC codes can be constructed by combining iterative demodulation and decoding
- Demonstrates that fiber nonlinearities can be accurately described by some analytical models, such as GN-EGN model
- Presents impairment equalization and mitigation techniques

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks is a reference for researchers, engineers, and graduate students.

Xiang Zhou is a Tech Lead within Google Platform Advanced Technology. Before joining Google, he was with AT&T Labs, conducting research on various aspects of optical transmission and photonics networking technologies. Dr. Zhou is an OSA fellow and an associate editor for *Optics Express*. He has extensive publications in the field of optical communications.

Chongjin Xie is a senior director at Ali Infrastructure Service, Alibaba Group. Before joining Alibaba Group, he was a Distinguished Member of Technical Staff at Bell Labs, Alcatel-Lucent. Dr. Xie is a fellow of OSA and senior member of IEEE. He is an associate editor of the *Journal of Lightwave Technology* and has served in various conference committees.

About the Author

Xiang Zhou is a Tech Lead within Google Platform Advanced Technology. Before joining Google, he was with AT&T Labs, conducting research on various aspects of optical transmission and photonics networking technologies. Dr. Zhou is an OSA fellow and an associate editor for *Optics Express*. He has extensive publications in the field of optical communications.

Chongjin Xie is a senior director at Ali Infrastructure Service, Alibaba Group. Before joining Alibaba Group, he was a Distinguished Member of Technical Staff at Bell Labs, Alcatel-Lucent. Dr. Xie is a fellow of OSA and senior member of IEEE. He is an associate editor of the *Journal of Lightwave Technology* and has served in various conference committees.

Users Review

From reader reviews:

Jay Burke:

A lot of people always spent their own free time to vacation or maybe go to the outside with them friends and family or their friend. Do you realize? Many a lot of people spent they will free time just watching TV, or perhaps playing video games all day long. In order to try to find a new activity here is look different you can read a new book. It is really fun in your case. If you enjoy the book which you read you can spent the whole day to reading a publication. The book *Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks* (Wiley Series in Microwave and Optical Engineering) it is quite good to read. There are a lot of people who recommended this book. These folks were enjoying reading this book. If you did not have enough space bringing this book you can buy often the e-book. You can m0ore very easily to read this book from your smart phone. The price is not too costly but this book has high quality.

Thomas Llanos:

Do you like reading a e-book? Confuse to looking for your best book? Or your book was rare? Why so many problem for the book? But any people feel that they enjoy for reading. Some people likes reading through, not only science book and also novel and *Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks* (Wiley Series in Microwave and Optical Engineering) or perhaps others sources were given know-how for you. After you know how the truly great a book, you feel want to read more and more. Science guide was created for teacher or perhaps students especially. Those ebooks are helping them to put their knowledge. In different case, beside science guide, any other book likes *Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks* (Wiley Series in Microwave and Optical Engineering) to make your spare time far more colorful. Many types of book like this one.

Ricky Dotson:

A lot of publication has printed but it is different. You can get it by online on social media. You can choose the best book for you, science, comedy, novel, or whatever by means of searching from it. It is named of book *Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks*

(Wiley Series in Microwave and Optical Engineering). You can add your knowledge by it. Without causing the printed book, it could add your knowledge and make you happier to read. It is most significant that, you must aware about publication. It can bring you from one location to other place.

Pamela Bost:

What is your hobby? Have you heard which question when you got pupils? We believe that that question was given by teacher to the students. Many kinds of hobby, Every person has different hobby. Therefore you know that little person like reading or as looking at become their hobby. You need to know that reading is very important as well as book as to be the factor. Book is important thing to incorporate you knowledge, except your own teacher or lecturer. You get good news or update in relation to something by book. Numerous books that can you take to be your object. One of them is actually Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering).

Download and Read Online Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie #1ML5G4XPS08

Read Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie for online ebook

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie books to read online.

Online Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie ebook PDF download

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie Doc

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie MobiPocket

Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie EPub

1ML5G4XPS08: Enabling Technologies for High Spectral-efficiency Coherent Optical Communication Networks (Wiley Series in Microwave and Optical Engineering) By Xiang Zhou, Chongjin Xie