

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity

By Koichi Hashiguchi, Yuki Yamakawa

Download now

Read Online

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa

Comprehensive introduction to finite elastoplasticity, addressing various analytical and numerical analyses & including state-of-the-art theories

Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors.

As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website.

 [Download Introduction to Finite Strain Theory for Continuum ...pdf](#)

 [Read Online Introduction to Finite Strain Theory for Continuum ...pdf](#)

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity

By Koichi Hashiguchi, Yuki Yamakawa

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa

Comprehensive introduction to finite elastoplasticity, addressing various analytical and numerical analyses & including state-of-the-art theories

Introduction to Finite Elastoplasticity presents introductory explanations that can be readily understood by readers with only a basic knowledge of elastoplasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors.

As a foundation to finite strain theory, the authors begin by addressing the advanced mathematical and physical properties of continuum mechanics. They progress to explain a finite elastoplastic constitutive model, discuss numerical issues on stress computation, implement the numerical algorithms for stress computation into large-deformation finite element analysis and illustrate several numerical examples of boundary-value problems. Programs for the stress computation of finite elastoplastic models explained in this book are included in an appendix, and the code can be downloaded from an accompanying website.

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa Bibliography

- Sales Rank: #2932528 in Books
- Brand: Brand: Wiley
- Published on: 2012-11-28
- Original language: English
- Number of items: 1
- Dimensions: 9.90" h x 1.00" w x 6.90" l, 1.75 pounds
- Binding: Hardcover
- 440 pages

[Download Introduction to Finite Strain Theory for Continuum ...pdf](#)

[Read Online Introduction to Finite Strain Theory for Continu ...pdf](#)

Download and Read Free Online Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa

Editorial Review

From the Back Cover

Elasto-plastic deformation is frequently observed in machines and structures, hence its prediction is an important consideration at the design stage. Elasto-plasticity theories will be increasingly required in the future in response to the development of new and improved industrial technologies. Although various books for elasto-plasticity have been published to date, they focus on infinitesimal elasto-plastic deformation theory. However, modern computational techniques employ an advanced approach to solve problems in this field and much research has taken place in recent years into finite strain elasto-plasticity. This book describes this approach and aims to improve mechanical design techniques in mechanical, civil, structural and aeronautical engineering through the accurate analysis of finite elasto-plastic deformation.

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity presents introductory explanations that can be easily understood by readers with only a basic knowledge of elasto-plasticity, showing physical backgrounds of concepts in detail and derivation processes of almost all equations. The authors address various analytical and numerical finite strain analyses, including new theories developed in recent years, and explain fundamentals including the push-forward and pull-back operations and the Lie derivatives of tensors.

Key features:

- Comprehensively explains finite strain continuum mechanics and explains the finite elasto-plastic constitutive equations
- Discusses numerical issues on stress computation, implementing the numerical algorithms into large-deformation finite element analysis
- Includes numerical examples of boundary-value problems
- Accompanied by a website (www.wiley.com/go/hashiguchi) hosting computer programs for the return-mapping and the consistent tangent moduli of finite elasto-plastic constitutive equations

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity is an ideal reference for research engineers and scientists working with computational solid mechanics and is a suitable graduate text for computational mechanics courses.

Users Review

From reader reviews:

Elaine Rode:

Have you spare time for a day? What do you do when you have more or little spare time? Yes, you can choose the suitable activity intended for spend your time. Any person spent their very own spare time to take a wander, shopping, or went to the Mall. How about open or even read a book called *Introduction to Finite Strain Theory for Continuum Elasto-Plasticity*? Maybe it is for being best activity for you. You already know beside you can spend your time along with your favorite's book, you can wiser than before. Do you agree with their opinion or you have additional opinion?

Edward White:

Reading a e-book can be one of a lot of pastime that everyone in the world really likes. Do you like reading book therefore. There are a lot of reasons why people enjoy it. First reading a book will give you a lot of new facts. When you read a e-book you will get new information simply because book is one of several ways to share the information or maybe their idea. Second, looking at a book will make a person more imaginative. When you studying a book especially tale fantasy book the author will bring that you imagine the story how the character types do it anything. Third, you could share your knowledge to other individuals. When you read this Introduction to Finite Strain Theory for Continuum Elasto-Plasticity, it is possible to tells your family, friends in addition to soon about yours guide. Your knowledge can inspire the others, make them reading a publication.

Wilma Hogan:

Reading a book tends to be new life style within this era globalization. With reading you can get a lot of information that could give you benefit in your life. With book everyone in this world can share their idea. Ebooks can also inspire a lot of people. Lots of author can inspire their particular reader with their story or maybe their experience. Not only the storyline that share in the ebooks. But also they write about the information about something that you need example of this. How to get the good score toefl, or how to teach your sons or daughters, there are many kinds of book which exist now. The authors these days always try to improve their expertise in writing, they also doing some research before they write to the book. One of them is this Introduction to Finite Strain Theory for Continuum Elasto-Plasticity.

Josie Garcia:

The book Introduction to Finite Strain Theory for Continuum Elasto-Plasticity has a lot associated with on it. So when you read this book you can get a lot of help. The book was authored by the very famous author. This articles author makes some research ahead of write this book. This kind of book very easy to read you can get the point easily after looking over this book.

Download and Read Online Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa #184VJ2XW576

Read Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa for online ebook

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa books to read online.

Online Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa ebook PDF download

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa Doc

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa MobiPocket

Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa EPub

184VJ2XW576: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity By Koichi Hashiguchi, Yuki Yamakawa